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AN EXPERIMENTAL INVESTIGATION OF TRANSONIC FLOW PAST 
TWO-DIMENSIONAL WEDGE AND CIRCULAR-ARC SECTIONS 

USING A MACH-ZEHNDER INTERFEROMETER l 
By ARTHUR EARL BRYSON, Jr. 

SUMMARY 

Interferometer measurements are given of the Jlow jields near 
two-dimensional wedge and circular-arc sections at zero angle 
of attack at high-subsonic and low-supersonic velocities, Both 
subsonic flow with local supersonic zone and supersonic J?OW 
with detached shock wave have been investigated. Pressure 
distributions and drag coescients as functions of Mach number 
have been obtained. The wedge data are compared with the 
theoretical work on flow past wedge sections of Guderley and 
Yoshihara, Vincenti and Wagoner, and Cole. 

It is shown that the local Mach number at any point on the 
surface of a Jinite three-dimensional body or an unswept two- 

’ dimensional body, moving through an in$nite jluid, has a 
stationary value at Mach number 1 and, in fact, remains nearly 
constant for a range of speeds below and above Mach number 1. 

- 

where embedded subsonic zones extend to the tunnel walls, 
or shock waves, reflected from the walls, impinge on the 
model. Some progress has been made recently in modifying 
wind-tunnel test sections so as to minimize these effects, 
but, on the whole, the majority of good test data in the 
range very close to M, = 1 has so far come from free-flight 
tests. Some good transonic data are available, however, 
from transonic-bump tests made in wind tunnels (reference 
1). Using small models usually results in low Reynolds 
numbers so that difficulty is often experienced in extrapo- 
lating data to full-size Reynolds numbers; this seems to be 
particularly true of the transonic speed range since the 
effects of boundary-layer and shock-wave interactions seem 
to be quite large there (references 2 and 3). 

On the basis qf this concept and the experimental data, pressure 
distributions and drag coeficients for the wedge and circular-arc 
sections are presented throughout the entire transonic range of 
velocities. 

INTRODUCTION 
DIFFICULTIES OF THEORY AND EXPERIMENT IN THE TRANSONIC RANGE 

OF VELOCITIES 

In this paper it is shown that in many instances tests need 
not be made in the region very close to Mm= 1 since the 
flow in this range can be inferred from testing below and 
above this range and using an interpolation based on the 
fact that the local Mach number at any ,point on the surface 
of unswept two-dimensional bodies and finite three-dimen- 
sional bodies has a stationary value at M, = 1. 

The difficulties inherent in studying transonic flow are 
well-known. Theoretical analysis is made difficult by the 
nonlinearity of the differential equations of compressible 
fluid motion. This nonlinearity leads to a change-over in 
type of the differential equations from elliptic to hyper- 
bolic when transition is made from subsonic to supersonic 
speeds. Since the essential feature of transonic flow is this 
mixed subsonic-supersonic character, it is obvious that no 
linearization of the differential equations (at least in the 
physical plane) can adequately describe the flow. 

Wind-tunnel studies in the transonic range are made 
difficult by the large lateral extent of the perturbation flow 
field around bodies in this range. This means that models 
which are small compared wit,h the test section must be 
used. Even then there is still a range of speeds from just 
below M, = 1 to just above M,= 1 where the model and/or 
its support configuration are %hoked,” that is, where local 
supersonic zones embedded in the subsonic field extend from 
the model to the tunnel walls, or, in the supersonic case, 

EXISTENCE OF POTENTIAL TRANSONIC FLOWS 

Guderley (reference 4) has made a detailed investigation 
of the possibility of smooth transonic flows (i. e., subsonic 
flows with an embedded supersonic zone in which no shock 
waves appear). He proposes that such smooth flows are 
exceptional, that they are discrete cases occurring for only 
particular body shapes at particular free-stream Mach num- 
bers. Any perturbation of the shape with the Mach number 
held constant (or vice versa), Guderley claims, would result 
in a shock appearing in the flow. This bears an analogy to 
the well-known Busemann supersonic biplane which theoret- 
ically has no shocks (and hence no drag) at a discrete value 
of free-stream Mach number and angle of attack (reference 
5, p. 154). Guderley’s proposal is still controversial (e. g., 
see the paper of Sears who has made a critical survey of the 
work to date on the existence of transonic potential flows 
(reference 6)). 

It is obvious that the potential flow must break down for 
a given body shape at some Mach number less than 1. The 

1 Supersedes NACA TN 2560, “An Exwimental Investigation of Transonic Flow past Two-Dimensional Wedge and Circular-Arc Sections Using h Mach-Zebnder Interferometer” by 
* Arthur Earl Bryson, Jr., 1951. 
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argument whether this breakdown occurs precisely when a 
supersonic region f?rst appears on the body or at a slightly 
higher Mach number seems somewhat academic (although 
very interesting), since it is well-known experimentally that 
the drag-rise Mach number (i. e., the Mach number where 
noticeable shocks first appear) is very close to the critical 
Mach number (i. e., the Mach number at which sonic velocity 
first appears on the body) for most bodies without surface 
slope discontinuities. 

KUO (reference 7) proposes that supersonic compression 
is unst,able to disturbances; that is, a supersonic region on 
a body in subsonic flow must end in a shock with no com- 
pression occurring in the supersonic flow ahead of the shock. 
There seems to be ample experimental evidence to show 
that this is not strictly true since, for example, the com- 
pression region of a X-shock is clearly supersonic. However, 
the X-shock configuration is believed to be a phenomenon 
associated with laminar-boundary-layer and shock-wave in- 
teraction;’ with turbulent boundary layer (a condition more 
closely approaching nonviscous flow) hardly any noticeable 
supersonic compfession occurs before the shock ending the 
supersonic zone (see reference 8). 

CEOICE OF MODEL,9 

Two-dimensional flow is much simpler to handle than 
axially symmetric flow both in theoretical work and in inter- 
ferometry. Hence it was decided to study two-dimensional 
flows despite the well-known difficulties in approximating 
two-dimensional flow in a wind tunnel. 

Because of the considerations mentioned previously it 
was decided to test very small models which would be of 
such a shape that viscous influences would not materially 
affect the flow over them. This led to the choice of “half 
airfoils”-wedges and circular-arc sections followed by 
straight sections. These models have favorable pressure 
gradients on their surfaces over most of the transonic 
range so that boundary-layer separation, if it does occur, 
will only occur because of shock-wave influence. Further- 
more, such separation will occur downstream of the part of 
the body being studied and hence will not affect the measure- 
ments. Certain viscous effects will still be evident, however, 
for instance, the effective rounding off of the shoulders and 
leading edges of the wedge models. 

Both theoretical advantages and practical need make the 
study of thin sections desirable. Consequently, the semi- 
wedge angles chosen were 4$‘, 7Q”, and loo (a 26.6O wedge 
was also used in order to make a comparison with some avail- 
able theoretical work on a wedge of this angle). The circular- 
arc section chosen was essentially the front half of an 8% 
percent-thick biconvex circular-arc airfoil, followed by a 
straight section. Models of sections much thinner than this, 
with the same chord lengths used, run into structural 
di&ulties and also the ratio of boundary-layer thickness to 
model thickness becomes large enough to cause considerable 
deviation from nonviscous flow. 

TItANSONIC-FLOW THEORY AND EXPERIMENTS 

The investigations of Von KBrmBn, Busemann, Guderley, 
Frankl, and many others have contributed significantly to 
methods of approach which can be used to study transonic 

flow (references 9 to 14). The detailed numerical calculations 
for specific cases made by Maccoll and Codd, Emmons, 
Drougge, Drebinger, Guderley and Yoshihara, and Vincenti 
and Wagoner (references 15 to 21) have helped to dispel the 
idea of a “sonic barrier.” Recently Cole at GALCIT has 
given an analysis of the flow past wedge sections at high- 
subsonic speeds (reference 22). By combining the results of 
Guderley and Yoshihara’s, Vincenti and Wagoner’s, and 
Cole’s calculations, the flow past thin wedge sections can 
be given completely through the transonic range permitting 
a comparison with the present experiments. Some of the 
investigations mentioned above will be discussed in more 
detail further on in the present paper. 

Available experiments in the transonic range on thin wedge 
sections are surprisingly few. Pack (reference 23) describes 
some interferometric experiments on loo and 20’ semiangle 
wedges made at Braunschweig. His subsonic data appear 
to be good, but the flow in the supersonic interferograms 
appears to be somewhat nonuniform and not very closely 
two-dimensional; only one supersonic Mach number was 
tested where detached shocks occurred. His conclusion that 
the p/p, distributions on the surface of the 20° semiangle 
wedge are very much the same for M, =0.803 and M, = 
1.40 is interesting, but the statement that this agrees with 
the theoretical predictions of Maccoll and Codd is incorrect 
since they indicated that the p/p0 distributions would be 
nearly the same. 

Griffith at Princeton has just recently published the 
results of some very carefully done experiments on flow past 
wedge sections of semiangles of 7”, lo”, 20°, 30°, 45O, and 
90” (and several other shapes) with detached shock waves 
(reference 24). These experiments were done in a shock 
tube and interferograms are presented of the flow fields. 
The experiments clearly show that the shape of the detached 
shock and its detachment distance from the sonic point on 
a wedge depend only on the body thickness and the Mach 
number (not the wedge angle) when the Mach number is 
well below the shock-attachment Mach number. This is in 
general agreement with Busemann’s considerations in his 
paper on detached shock waves (reference 10). 

Liepmann, Ashkenas, and Cole (reference 8) made some 
careful pressure measurements on the surfaces of 6- and 
12-percent-thick biconvex circular-arc airfoils at zero angle 
of attack at high-subsonic speeds in connection with studies 
of shock-wave and boundary-layer interaction. Some of the 
results of their tests are combined here with corresponding 
low-supersonic test results from the present investigation to 
indicate the behavior of the pressure distribution on circular- 
arc airfoils at zero angle of attack through the entire transonic 
range. 
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ing out the experimental work. Some of the results of these 
experiments have already been reported in reference 25. 

‘ 
SYMBOLS 

a sound velocity 
C airfoil chord 
c .D pressure-drag coefhcient 

-. ~~=-3--.r&u~&&-ag coefficient (Y-l-l)!‘TD 
(t/c)“‘a - > 

pressure coefficient 

reduced pressure coefficient c-l+ 1Y3C* 
(t/c)“‘” > 

Gladstone-Dale constant 
model span 
Mach number 
index of refraction 
pressure 
dynamic pressure 

u 
x7 Y 

i-7 
a! 

’ Y 
0 
x 

E 

P 

airfoil thickness ratio 
horizontal component perturbation velocity (per- 

turbation from a*) 
vertical component perturbation velocity 
Cartesian coordinates, origin at leading edge of 

profile 
reduced vertical distance ([( y + l)t/c] ‘j3y) 
angle of attack 
ratio of specific heats (1.4 for air) 
semiwedge angle 
wave length of monochromatic light used on inter- 

ferometer 

reduced Mach number M2-1 
(7-t 1yyt/cy > 

density 
Subscripts and superscripts : 

i i.- 
conditions in free stream 
reservoir conditions 

; ,‘i 
reservoir conditions behind a shock wave 
conditions at sonic velocity 

Symbols used without subscripts indicate local conditions. 

APPARATUS AND METHODS 

WIND TUNNEL 

The measurements were made in the GALCIT 4- by 
lo-inch transonic wind tunnel. For a description of the 
tunnel and the flexible nozzle employed see reference 26. 
The tunnel can be run at both subsonic and low-supersonic 
velocities with continuous Mach number variation through 
use of the flexible nozzle and a variable second-throat nozzle 
downstream of the test section. 

MODELS 

The models used were half airfoils followed by straight 
sections. Four of the models were wedges (semiangles 
4.53’, 7.56’, lO.OO’, and 26.57’) followed by straight sections 
and the fifth was half of a biconvex circular-arc airfoil (8.80 
percent thick) followed by a straight section (see fig. 1). 
The distance from the leading edge to the point where the 
straight section began was of the order of .j!, inch for all five 
models. The models were made of tool steel and were very 

“i -. 
81 

carefully machined and lapped so as to give exact cylindrical 

4:53O .060 

.219 __I 

t- I 
b-.750-------4 

10.OOO .093 

-- -- 
w ---- 

- 

I Iv- 

26.57" 

r;'=-=+-..-.. 

,053 1 
l- 

-- --- 
I l-r 

.360+ r-- 
bp.750 -=j 

FIGURE l.-Ckmetry of sections tested. All dimensions BR in inohrs. 

surfaces. Two pressure orifices on opposite sides of the air- 
foil were placed exactly the same distance from the leading 
edge to aid in setting the model to zero angle of attack’by 
balancing these pressures on an alcohol U-tube. Because 
of the very short chord lengths vernier-protractor measure- 
ments of the opening angles of the leading edge were of 
doubtful accuracy, so the angles were measured by letting 
the leading edge split a beam of parallel light and measuring 
the position of the reflected spots on a wall behind the 
model. In this manner the angles could be measured to 
f0.03O. 

INTERFEROMETER 

The interferometer used in this investigation is described 
in references 27 and 28. One of the main features of this 
interferometer is that both light beams are passed through 
the test section, one over the model and the other ahead of 
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the model in the uniform flow field, that is, where the velocity 
is nearly the free-stream velocity. The advantages of this 
are: (1) The fringe shifts are in relation to the free-stream 
density and (2) the effects of the side-wall boundary layers 
are approximately canceled out since both beams traverse 
nearly the same boundary layer at each side window. This 
leads to improved accuracy when the interferograms are 
evaluated on the basis of the absolute value of the fringe 
shift from no-flow conditions. For these tests finite-fringe 
interferograms were used and another method of evaluation 
was devised which is much simpler and more accurate than 
the above-mentioned technique. Infinite-fringe interfero- 
grams, while they give the constant-density contours im- 
mediately, are less accurate than the superimposed finite- 
fringe interferograms because any optical inaccuracies in the 
system cause the contour fringes to be distorted. These 
inaccuracies are calibrated out in the superimposed finite- 
fringe interferograms. Also there are times when one does 
not know whether the density increment between contours 
of an infinite-fringe interferogram is positive or negative; 
this trouble does not arise with the finite-fringe interfero- 
grams. A typical finite-fringe interferogram is shown in 
figure 2. 

FIGURE Z.-Typical finite-fringe interferogram. 8.8-percent circular-arcsection at M, =l.ZW. 

METHOD OF EVALUATION OF INTERFEROGRAMS 

The method of evaluation used here depends on two 
techniques: (a) Photographic superposition of disturbed 
and undisturbed interferograms and (b) fringe identification 
by a pressure measured on the model. 

Direct photographic superposition of a “no-flow” finite- 
fringe interferogram on a “with-flow” finite-fringe interfero- 
gram gives rise to dashed shadowy lines (the dashes being 
where the dark fringes of one picture cross the light fringes 

FIGURE 3.-Typical superimposed finite-fringe interferogram. IO” semiangle wedge at 
M, =1.278. 

of the other); see figure 3 for an example of this type of 
picture. These shadowy lines can easily be shown to be lines 
of constant density for two-dimensional flow and are the 
same contours as would be obtained on an infinite-fringe 
interferogram made with perfect optical surfaces. The 
increment in density between these shadowy lines is a 
constant dependent only on the span of the model and the 
wave length of the monochromatic light being used. This is 
easily shown since the difference in optical path lengths of 
the light rays between two adjacent constant-density con- 
tours must be 1 wave length of the light being used. For 
two-dimensional flow the difference in optical path length 
will simply be lAn, where 1 is the span of the model and An is 
the difference in index of refraction between the two light 
paths. Thus 

lAn=X (1) 

But the relation between index of refraction and density in a 
gas is given by 

n-l=kp (2) 

where k is the Gladstone-Dale constant (a funct,ion of the . 
light frequency and type of gas). Therefore 
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Ap= X/k1 (3) Ap=Xlkl 

where Ap is the difference in density between two adjacent Now in any part of the flow field where the stagnation 
constant-density contours. For these experiments density is constant along a streamline, 

X=5461 A (mercury green line) 
k=0.1162 cu ft/slug 
1=3.50 in. 

so ,A.-_-- --” 
Ap/p,=O.O250 per fringe.shift 

so. 

1 -- 

;= 1++/p 

( > 

y-1 (4) 

where ~,=0.00211 slug per cubic foot was the usual tunnel 
stagnation density. 

Y -Pi 
MdM (5) 

The advantage of photographic superposition is not only 
in time saved but also in increased accuracy of evaluation. 
Any slight changes in fringe spacing or fringe orientation 
with respect to the no-flow interferogram which occur before 
the with-flow interferogram is taken can be almost exactly 
canceled out by causing the two superimposed interfero- 
grams to coincide exactly in a region where it is known that 
the flow was uniform, since in such regions there should be 
no isopycnic contours. This is particularly easy to do for 
supersonic flow if a portion of the flow field ahead of the nose 
shock wave is included in the interferogram. For subsonic 
flow care must be taken to include enough of the ilow field 
ahead of the model in the interferogram to have some of the 
nearly undisturbed flow field for comparison; this was quite 

Hence the increment in Mach number between adjacent 
contour fringes is given approximately by 

Y 
1+y-l 

r-1 

AM= 
2 M2 

M kl”,. 

AP X -=- 
PO klpo 

(6) 

2 

_ simple to do for the small, thin models used in these tests. 
The actual superposition technique used here was first to 

This function has a minimum at M= - 
J- rfl 

which is 

M=O.914 for air (y=l.4). A graph of this function is 
shown in figure 4. Note that the Mach number increment 
per fringe for these tests was always closely equal to 0.05. 

make a print (3jh times enlarged) of the with-flow interfero- 
. gram. This print was then placed under the enlarger and 

the no-flow interferogram negative was put into the enlarger. 
By changing the enlargement scale and moving the with-flow 
interferogram under the enlarger the fringes were made to 
coincide exactly in the regions of uniform flow. The con- 
stant-density contours could then be drawn in on the print. 
Alternatively, the first print could be made on transparent 
paper (Ansco Reprolith Ortho was used) and when the super- 
position was accomplished a piece of photosensitive paper 
was slipped under the transparent print and a print of the 
two interferograms was obtained. This was the technique 
used for figure 3. 

.04 I I I I 
‘.Minimum 01 M = 

.02 I I I 
y& = 0.914 

I 

0 .2 4 .6 .8 1.0 1.2 I.4 1.6 1.8 2.0 2.2 
M 

FIGURE 4.-Increment in Maoh number per fringe contour against local Mach number for 
air (7=1.4). For these tests X/kl,,.=0.025M.O01. 

In order to identify the density values with the fringes a 
pressure tap was placed on each model approximately half- 
way from the leading edge to the shoulder (a region where 
the pressure gradient was expected to be large). From the 
pressure reading the density at the pressure tap was calcu- 
lated using reservoir fluid properties (taking into account 
entropy changes through shock waves). The pressure tap 
will always lie between two fringe contours or on a contour, 
so that, by knowing the density increment between fringe 
contours, the values of the density on the adjacent contours 
can be obtained by interpolation. The whole interferogram 
is determined once the density is known on one contour (ex- 
cept for the shifts through shock waves). 

Similarly, the expression for the increment in pressure 
coefficient between adjacent contour fringes is approxi- 
mately 

AC,= (7) 

M-2 

INTERFEROMETER SENSITIVITY 

For values of M close to M,, this expression has a minimum 
2 atM,= - 

J- 2--r 
which is 1.832 for air. 

It is interesting to note that the interferometric method 
, has its greatest sensitivity in the transonic range. As 

pointed out previously, the density increment between two 

SIDE-WALL BOUNDARY-LAYER EFFECT ON APPROXIMATING 
TWO-DIMENSIONAL FLOW 

‘5 _ adjacent contour fringes is a constant 

A close approximation to two-dimensional flow over the 
whole span of the model was required since the interferometer 
integrates the value of the density from wall to wall. In a 

.__ .._ _- 
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nonviscous fluid letting the’ model extend from wall to wall 
would theoretically give two-dimensional flow over the whole 
span. If the model did not span the whole tunnel, the flow 
would correspond to that past a model of infinite span with 
periodic gaps in it where the gaps were equal to twice the 
distance from the edge of the model to the wall. The effect 
of the side-wall boundary layers, for a model that does not 
span the tunnel, is roughly to decrease the size of this gap. 
Approximately, the gap size would be decreased by twice 
the displacement thickness of the wall boundary layer. By 
making the gap between the edge of the model and the wall 
approximately equal to the wall-boundary-layer displace- 
ment thickness, one might hope to approximate closely two- 
dimensional flow over the span. This phenomenon is, of 
course, very much more complicated than this, particularly 
in the supersonic case where the shock waves interact with 
the wall boundary layer. However, by taking circular- 
cylinder and wedge models and varying the gap size in in- 
crements of )is inch, it was found that the detached bow wave 
became closely two-dimensional when the gap size was )i inch 
( i. e., there was no blur ahead of or behind the shock pictures) 
which is almost exactly the boundary-layer displacement 
thickness when measured without a model in the test section. 
When the gap was Q&Y inch the shock was blurred ahead of 
the main shock and when the gap was x6 inch it was blurred 
behind the main shock. These tests were further sub- 
stantiated by some schlieren pictures, which Mr. Walter G. 
Vincenti of the NACA Ames Aeronautical Laboratory 
kindly made available, showing a view looking down on a 
wedge model so that the leading edge of the detached shock 
appeared as a line; by varying the model span a discrete 
value of the span was found where this line was almost exactly 
parallel to the leading edge of the model, while for just 
slight variations from this gap size the shock was curved 
forward or backward. Figure 2 shows a finite-fringe inter- 
ferogram of the circular-arc section with a detached shock 
where the definition of the shock wave was unusually sharp. 
This is strong, but, of course, not conclusive, evidence that 
the flow was closely two-dimensional over most of the span. 
Purther evidence that the flow differed from two-dimensional 
flow only slightly is given in the next section. 

SIDE-WALL BOUNDARY-LAYER EFFECT ON INTERFEROGRAM 
EVALUATIONS 

A result of the method of interferogram evaluation de- 
scribed above is that the effect of the side-wall boundary layer 
is approximately canceled out, since the over-all fringe shift 
from no-flow conditions is unimportant, only the relative 
fringe shifts from a point of known density being used. This 
is strictly true only if the integrated side-wall boundary-layer 
density, defined by 

r 
6 

dy (8) 
JO 

where y is the direction perpendicular to the tunnel wall and 
y=O is the wall, is the same over the entire field of view of 
the interferometer. Obviously, this can never be exactly 
true since the pressure field caused by the model, the 
boundary-layer growth, and the shock-wave and boundary- 
layer interaction all tend to change this value. An indica- 
tion that all these effects might be small was obtained from 

the model tests where pressures were measured at two 
points on the model in the center of the span, where the 
flow is closely two-dimensional; the density increment be- 
tween these two points on the model was compared with 
the density increment given by the interferogram. The 
standard deviation from zero of the difference between these 
two increments over the whole range of test Mach numbers 
was about 1 percent of the stagnation density. Also, the 
values of pressure-drag coefficient obtained interferomet- 
rically for the attached-shock-wave cases checked the 
oblique-shock theory very closely, and it is well-known that 
the oblique-shock theory checks experiment quite well. 

DETERMINATION OF FREE-STREAM MACH NUMBER 

An interesting result of the method of evaluation just 
described is that the free-stream Mach number in subsonic 
flow can be determined from the interferogram and the 
measured pressure on the model, provided a large enough 
field of view ahead of the model is obtained in the inter- 
ferogram. This can be done by noticing that a certain 
number of compression contours appear around the leading 
edge and then expansion contours follow these toward the 
back part of the airfoil; the center fringe corresponding 
to free-stream density can then be traced out into the flow 
field (see, e. g., figs. 9(a) to 9(d) of the 10” wedge in subsonic 
flow). The exact value of the density can be determined on 
this fringe as described previously and, hence, knowing 
the stagnation density in the settling chamber, the effective 
free-stream Mach number can be determined from the 
isentropic-flow relations. It is believed that this effective 
Mach number is a good approximation to the free-flight 
free-stream Mach number and would give the same flow as 
that measured in the wind tunnel for the very small models 
used in these tests. 

This method is more accurate at high-subsonic speeds 
than at low speeds since more contour lines are obtained on 
the airfoil at the higher speeds (see above discussion). The 
estimated accuracy in determining free-stream Mach num- 
ber in this way was fO.O1 for the range of subsonic Mach 
numbers tested. 

The free-stream Mach numbers for the supersonic tests 
were obtained by calibrating the flexible-nozzle jack settings 
against Mach number with a static-pressure probe in the 
center of the tunnel. The probe was traversed upstream 
and downstream in the region where the models were to be 
tested and an average Mach number was obtained there. 
The standard deviations from this average value were of the 
order of 10.005 in Mach number for the range of supersonic 
Mach numbers tested. 

WIND-TUNNEL CHOKING 

In all the subsonic testing the embedded supersonic zone 
was not allowed to touch the upper or lower walls. In one 
or two of the low-supersonic tests there was a question 
whether the embedded subsonic zone touched the ceiling or 
not. In case it did, it is well-known that in such cases the 
detached shock changes its curvature near the ceiling so as 
to come in nearly normal to the walls. Since the models 
were so very small (%f, in. thick compared with the lo-in. ’ 
height of the tunnel), it is believed that the effect of this on 
the pressure distribution was negligible. 
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REYNOLDS NUMBER 

The value of the Reynolds number for all of these tests 
was approximately 60,000 based on-the chord of tge model. 
The boundary layer on the models was laminar and no 
effort was made to trip the boundary layer to make it 
turbulent. The compression region in the shocks shown in 
the high-subsonic-flow interferograms is believed to be 
associated with’ the laminar boundary layer, as mentioned 

j ‘I previous+---- 
THEORETICAL WORK ON TRANSONiC FLOW 

RELAXATION CALCULATIONS 

In 1946 Maccoll presented a paper at the Sixth Interna- 
tional Congress for Applied Mechanics in which he described 
a relaxation calculation of the compressible flow past a 20° 
semiangle wedge followed by a straight section at Mach 
numbers of 0.7 and 1.5. The flow field in both cases con- 
tained both subsonic and supersonic velocities. His main 
assumptions were: (1) Sonic velocity occurs at the shoulder 
and (2) the streamlines of the flow are perpendicular to the 
sonic line (i. e., the line where sonic velocity occurs in the 
flow). The first assumption can be shown to be correct (see 
reference 22) so that, indeed, it is not an assumption. The 
second assumption, as Maccoll realized, was only approxi- 
mately correct for M,= 1.5 and certainly quite incorrect 
far away from the wedge at M-=0.7 (since the assumption 
leads to an infinite supersonic region above the wedge). In 

. effect, his solution at M-=0.7 was “choked” in the sense 
that the back part of the body could have no influence on 
the front part. It is well-known that for bodies at high- 

* subsonic speeds a finite, closed supersonic region occurs in 
the flow, so that the sonic line makes all angles possible with 
the streamlines, including 0”. The method of solution used 
was to assume positions of the shock wave and sonic line, 
calculate the residues in the relaxation net using the isen- 
tropic-flow equations (an approximation since flow behind a 
curved shock is not iscntropic), and then readjust the shock- 
wave and sonic-line location, calculate again, and so forth, 
iterating until the solution closely repeated itself. Maccoll 
found that the p/pa’ distribution on the wedge surface at 
M, = 1.5 was nearly identical with the p/p0 distribution at 
M-=0.7. This led him to propose that the pressure in the 
transonic region, on bodies with distinct corners, varied as 
the stagnation pressure and he presented a drag curve 
through M,= 1 for the 20’ semiangle wedge calculated on 
this basis. 

Drougge in 1948, following Maccoll, calculated the flow 
past a finite cone of 45’ semiangle with detached shock wave 
at M,= 1.80 and M-=2.15, using the same assumptions 
as Maccoll (reference 18). He also made experiments on 
this cone and found the agreement with his theory rather 
good. He made several tests at lower supersonic Mach 
numbers also and found that the p/pQ’ distribution on the 
cone surface did remain nearly constant except as the Mach 
number became close to the attachment Mach number. 

Drebinger in 1950 showed how to calculate, by relaxation 
techniques, the flow past finite cones and wedges with de- 

. tached shocks, eliminating the isentropic-flow assumption 
and the assumption on the streamlines being perpendicular 

b . to the sonic line (reference 19). He calculated a specific 
243695-53’2 

example-a 26.6O semiangle wedge at M-=1.440-and 
checked the calculated shock-wave shape and position exper- 
imentally. His calculations showed that, even for the de- 
tached-shock case, the streamlines differed from being per- 
pendicular to the sonic lines by angles as large as 30’. His 
calculation was checked in detail experimentally in these 
tests and agreement was found to be excellent. 

TRANSONIC PERTURBATION THEORY 

By assuming that the velocity component parallel to the 
free-stream direction differs only by a small quantity u from 
a*, the critical velocity, and keeping only the highest-order 
terms in the differential equation, the equations of two- 
dimensional irrotational fluid motion are reduced to 

u a~ av 
(Y+l)>z+G=o 

\ 

au av 
---= by ax 

o 

i 
(9) 

It was from these equations that Von Karm4n and Guderley 
independently arrived at the transonic similarity laws 
(references 9 and 4). For two-dimensional steady flow past 
sections whose shape functions are the same, these laws 
implv that _ 1 

M2--1 

[(Y + lwP3 (10) 

where M is the local Mach number on the surface of the 
section. The similarity in pressure and drag coefficients 
is then 

(Y+ 1)*‘3G=g Me,‘- 1 
(t/c)“‘” 1 KY+ lM1”” 3 

(Y+ 1)“3C~=h M,‘- 1 
(t/c) u3 1 KY+ lPlC12’3 f (12) 

These quantities will be called reduced local Mach number, 
reduced free-stream Mach number, reduced pressure coef- 
ficient, and reduced drag coefficient, respectively, using 
symbols E, E,, cP, and ED. 

By interchanging dependent and independent variables 
in the perturbation equations, the problem becomes linear: 

aY aY D z+b;ii=o 

ax by Bv-~‘o 
1 

(13) 

where 

z=cr+ 1) 3 

T’=(Yfl) 3 

and, by eliminating x by differentiation, the Tricomi equa- 
tion is obtained: 

;iid2y+~=o 
aii2 au2 (14) 

The main difhculties with this hodograph (u, v) plane are: 
(a) The mapping of physical boundaries into the hodograph 
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plane is, in general, not known until the solution to the 
problem is known so that it is not known where to apply the 
boundary conditions in the hodograph plane and (b) the 
mapping is often multivalued, complicating the solution. 
Two interesting cases are known where these difficulties 
are avoided. They are: (a) The free jet, studied by Tschap- 
lygin in 1905, and (b) the finite wedge, studied recently by 
Guderley and Yoshihara, Vincenti and Wagoner, and Cole. 
These latter studies came to the author’s attention after the 
present experimental study of the finite wedge in transonic 
flow had begun and served to make the study more interest- 
ing since the data could then be compared with the theo- 
retical results. 

THEORETICALSTUDIES OF TRANSONIC FLOW PAST THIN WEDGE SECTIONS 

Guderley was the first to formulate the problem of the 
thin finit,e wedge in the hodograph; he and Yoshihara found 
an approximate solution to the problem of the flow past a 
thin double-wedge profile at zero angle of attack at Mach 
number 1 using the transonic perturbation equations 
(reference 20). 

Vincenti and Wagoner considered the thin double-wedge 
profile at zero angle of attack for low-supersonic Mach 
numbers where the shock wave is detached (reference 21). 
Their solutions were effected by relaxation calculations in 
the hodograph plane. Here the bow shock wave and the 
sonic line are fixed boundaries (t,heir positions are not 
known originally in the physical plane) and the boundary 
condition on the shock is the slope of the streamlines (or 
the lines y= Constant). This boundary condition was 
first shown by Busemann, who aptly called the configura- 
tion a “hedge hog.” 

Cole (reference 22) has recently given a simple approxi- 
mate analytical solution to the flow past a thin symmetrical 
wedge followed by a straight section at high-subsonic 
speeds (M, 6 1). His solution satisfies the Tricomi equa- 
tion and the boundary conditions on the wedge and at infinity 
but not the boundary conditions on the sonic line. Effec- 
tively, his solution gives a finite vertical sonic line from the 
shoulder which is also a limiting line. Cole has indicated 
that this solution is the singular part of the solution in the 
hodograph and as such is most likely the main part of the 
solution. It is interesting to note that the drag-curve slope 
and curvature at M,- 1 obtained from Cole’s solution 
agree exactly with the values obtained from the simple 
physical considerations of the next section. Also, the pres- 
sure distribution on the wedge at Mm= 1 agrees within 1 
or 2 percent with that obtained by Guderley and Yoshihara. 

Since the back half of a double-wedge profile has only a 
very weak influence on the pressure distribution on the 
front half for M,>l (only through the “last Mach wave” 
from the shoulder point to the sonic point on the detached 
shock), it is reasonable to take the solution of the double 
wedge at M, 2 1 and use the front-half solutions in con- 
nection with Cole’s results for M, 5 1 for the wedge fol- 
lowed by a straight section and thus have a solution for the 
latter semi-infinite body completely through the transonic 
range. By using linearized subsonic theory and the shock- 

. 
expansion supersonic theory, the zero-angle-of-attack flow 
is obtained for all possible values of M,. 

Tsien and Baron (reference 29) have shown that the 
shock-expansion theory can be expressed in the transonic 
similarity form for thin bodies in pure supersonic flow near 
M-=1. 

Von K&man (reference 9) has indicated also how linear- 
ized subsonic- and supersonic-flow results may be written 
in the transonic similarity form since, from the Prandtl- 
Glauert similarity, in linearized subsonic theory, 

and, in linearized supersonic theory, 

and from the expressions for reduced pressure coefficient 

and Mach number, multiplying both sides by (Y + 1Y3, 
(t/c)“‘” 

these equations may also be written as: 

X 4-J c’ 
,:TR$[(r+l)i]l’3$ (154 . 

(Y+ 1Y3CP- KY+ lm12’3 
(t/c)“” - J Mm2- 1 

but 
1 (1fW 

Ep=(Yf lY3CP 
(t/c)“‘” 

so equations (15) and (16) may be written in transonic form 

The subsonic pressure-distribution and drag-coefficient 
curves have been calculated here from Cole’s analytical 
expressions and, combined with the results of Guderley and 
Yoshihara, Vincenti and Wagoner, and Tsien and Baron, 
the curves for reduced pressure and Mach number distribu- 
tion and reduced drag coefficient 2 are given in figures 5 to 8 
for the finite wedge followed by a straight section. 

2 The reduced drag coefficient given in figure 8 is that for the half wedge and is cquel to 
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FIGURE 5.-Theoretical reduced local Mach number distributions on a wedge near Mach 
number 1. Data from rrferences 20 to 22 and 29. 
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FIGURE B.-Theoretical reduced local Mach number against reduced free-stream Mach 
nuinber at several chordwise stations on a wedge. Data from references 20 to 22 and 29. 
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FIGURE 7.-Theoretical reduced pressure-coefficient distributions on a wedge near Mach 
number 1. Data from rcferenccs 20 to 22 and 29. 
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FIGURE g.-Theoretical reduced drag coefficient against reduced Mach number for a wedge. 

It can be shown that Cole’s solution for large negative 
values of .$, goes over exactly into the linearized subsonic 
solution (see appendix A). The reduced-pressure-coefficient 
curve for E, = -2.02 in figure 7 is so nearly identical for both 
solutions that they cannot be told apart (except that Cole’s 
solution goes to CPcr at x/c= 1 while the linearized solution 
goes to - co). This is to be expected since the transonic 
perturbation equations are not restricted to transonic 
flow but apply equally well to completely subsonic and 
completely supersonic flo~.~ The transonic equation can 
be written in the form 

8 This was pointed out to the author by Dr. Milton Van Dyke of the NACA Ames Aero- 
nautical Laboratory. 
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where 9 is the perturbation potential such that u=U-$$ 

aP 
v=d?/’ 

Thus it is clear that for completely subsonic or 

completely supersonic flows the term on the right is negli- 
gibly small but becomes of paramount importance in transonic 
flow. 

CHARACTERISTIC FEATURES OF TRANSONIC FLOW PAST 
WEDGE AND CIRCULAR-ARC SECTIONS 

CHARACTERISTIC FREE-STREAM MACH NUMBERS 

Critical Mach number.-The Mach number at which 
sonic velocity first appears on the wedge is Mm=0 (within 
the inviscid theory) since subsonic flow cannot turn a sharp 
corner. Because of the fact that the boundary layer rounds 
off the corner, and perhaps also because of the spatial 
resolution limitations of the interferometric method, sonic 
velocity was not found there experimentally until 
approximately .$, = -0.80 for the wedges. 

The critical Mach number for a half circular-arc airfoil 
foll.owed by a straight section can be obtained approximately 
from linearized subsonic theory. This theory gives the 
surface pressure distribution as 

C+-IL2 [+-~)lwc &] (20) 

which yields 

(21) 

at x/c=O.783 (see appendix B). This equation can also be 
written in transonic similarity form by multiplying both 

sides by (;,f,bj:‘” (as shown in the previous section) : 

(22) 

Now, within the transonic perturbation theory, 

Hence 
c7=-m-L) (23) 

Go=% (24) 

Equating cD,i. to CD,, one obtains the critical reduced 
Mach number 

For the thickness ratio t/c=O.OSS used in these tests, this 
predicts a critical Mach number of 0.834 at x/c=O.783. 
Experimentally, the critical Mach number was found to be 
0.825 and occurred somewhere between x/c=O.75 and 0.95 
(the pressure distribution was very flat in this range). It is 
interesting to note that the experimental MmCr was higher 
for the wedges than for the circular-arc profile of the same 
thickness ratio. This was probably due to a combination 
of three effects: (1) The boundary layer for the same 

Reynolds numbers used here was fairly thick in comparison 
with the dimensions of the model and thus it “rounded off” 
the shoulder more than would be the case at higher Reynolds 
numbers. (2) The height of the supersonic zone, even for 
an ideal nonviscous flow past thin wedges, appears to be 
quite small until the free-stream Mach number is quite 
close to 1. This is apparent from Cole’s theory and also 
from the argument in reference 25 that the height of shocks 
in the supersonic zone must be of the form 

(3) The spatial resolution of the interferometric method may 
not have been sufficient to detect very small supersonic 
zones near the shoulder. There is also a large refraction 
error near the shoulder due to the high .density gradients 
which tends to obscure details of the flow there. 

Shock-attachment Mach number.-The shock-attachment 
Mach number depends only on the opening angle of the 
profile at the leading edge and can be predicted quite pre- 
cisely by oblique-shock theory. If 0 is the semiopening angle, 
then it can be shown that approximately, for thin profiles, 

L*= 
MwA2-l 3 =- 

KY+ 1)e12’3 42’3 (25) 

(see appendix C). If t/c is the thickness ratio of the circular- * 
arc section, 0 -2(t/c). Hence for the circular-arc profile 

Fm,=$ (26) . 

Mach number at which sonic velocity appears behind an 
oblique shock.-The Mach number at which sonic velocity 
appears behind an oblique shock M,,y is just slightly higher 
than M,, and again is a function only of the opening angle. 
These values can also be found quite precisely from oblique- 
shock theory and approximat,ely in similarity form can be 
given as 

Mm,‘- 1 
~co,=[(~+ 1),j]2,3=‘~‘~ (27) 

for the wedge (see appendix C) and 

Ls= 2 

for the circular-arc section. 

(28) 

CHARACTERISTIC VALUES OF LOCAL MACH NUMBER 

Mach number at leading edge.-The Mach number at the 
leading edge is zero (a stagnation point) for all free-stream 
Mach numbers less than the attachment Mach number. 

Mach number at shoulder of wedge.-The Mach number 
at the shoulder of the wedge just before the turn is always 1. 
This is easily seen in the case of flow with detached shock 
since the only characteristic distance of the finite wedge is 
the distance from the leading edge to the shoulder which 
must determine the shock-detachment distance, and, if the . 
sonic point occurred ahead of the shoulder, the shoulder 
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could not influence the shock position. Subsonic flow cannot 
turn a sharp corner so the flow must therefore reach Mach 
number 1 right at the corner. In the case of subsonic free- 
stream flow the argument is not so simple (see reference 22). 

At the shoulder the flow around the corner is locally a 
centered Prandtl-Meyer fan starting from M= 1. The Mach 
number just behind the corner is thus determined only by 

, .< the.wedge. angle and.is independent of the free-stream Mach 
number.’ Behind this point the flow will recompress to the 
free-stream Mach number through a shock or series of shocks, 
for free-stream Mach .numbers less than the attachment 
Mach number. The expression for Mach number MpJf 
behind an expansion from M= 1 through an angle 6 is 

T$ d---tan-’ JMpdf2- 1 (29) 

Expanding the right-hand side in powers of JMpM2- 1 
(assumed small), the first nonzero term yields 

which is in transonic similarity form so 

tpAf= Mm’-- 
1 3 2’3 

[(Yf 1)eP3 = 0 5 

’ PRESSURE DISTRIBUTION ON BODIES MOVING THROUGH 
AN INFINITE FLUID AT SPEEDS NEAR MACH NUMBER 1 

STATIONARY VALUE OF LOCAL MACH NUMBER AT FREE-STREAM MACH 
NUMBER 1 

During t,he course of these investigations it was found 
that for the wedge and circular-arc sections the local Mach 
number distributions on these sections at very high subsonic 
speeds (above Mmcr but below choking IMach number) 
and at very low supersonic speeds (where the detached 
shock wave was a chord length or so ahead of the section) 
were nearly identical. In trying to understand why this 
should be so, the following explanation was derived: (1) At 
low-supersonic speeds the bow shock wave is detached a 
great distance ahead of the profile and a subsonic flow region 
is embedded in the flow field between the shock and the 
sonic line. The part of the shock directly ahead of the 
profile is nearly normal over quite a distance (of course, the 
slope of the shock asymptotically tends to the slope of the 
Mach wave of the free-stream flow at large distances lateral 
to the flow direction). Nagamatsu (reference 30) has pre- 
viously indicated this and points out that the flow past the 
profile should be closely approximated by assuming the 
profile is in a high-speed subsonic flow where the velocity 
distribution at infinity is slightly nonuniform, the minimum 
velocity being directly ahead of the profile and equal to the 
velocity behind the normal shock and then increasing in 
both lateral directions. (2) Now the normal shock near 
Mach number 1 is nearly symmetrical in the sense that the 
Mach number behind the shock is just as much below 1 as 

the Mach number ahead is above 1. This follows from the 
normal-shock relation: 

l-Ms2= M12- 1 

l+$& (M12- 1) 
(32) 

where Ml is the Mach number ahead of the shock and Mz 
is the Mach number behind the shock; so near Ml=l, 

l-M2 frz&f,2- 1 (33) 
or 

l-Mz=Ml-I (34) 

Therefore if M, = 1 +e, where E is small, the flow past the 
profile is nearly the same as the flow past the profile at 
Mm = 1 --E since’ the Mach number behind the central part 
of the detached shock wave is almost exactly 1 --E. It 
follows therefore that the local Mach number distribution 
on the profile surface must have a stationary value at 
Mm= 1 and furthermore vary only slowly in the neighbor- 
hood of Ma = 1. Matherr,atically this means 

(35) 

It should be noticed that this argument is based on two 
assumptions: 4 (1) The detached bow wave moves very far 
ahead of the profile as the flight Mach number decreases 
toward 1. (2) The radius of curvature of the detached bow 
wave at points directly ahead of the profile becomes ex- 
tremely large as the flight Mach number decreases toward 1. 

Examining these assumptions, it would seem that the 
same reasoning should apply to any finite three-dimensional 
body in an infinite fluid traveling at speeds near Mach 
number 1, except that now two radii of curvature at points 
on the cletached bow wave ahead of the body must be 
assumed to become large as the flight Mach number de- 
creases toward 1. The detached bow wave is so far away 
from the body at speeds just slightly above Mach number 1 
that the body appears as only a very small object in relation 
to the radii of curvature of the bow wave and, hence, it 
would appear as though the shape and attitude of the body 
could have no appreciable effect in changing the argument 
presented above. 

The reasoning should also apply to an infinite yawed 
cylinder (whose cross section may be finite or, if the angle 
of attack is 0, may extend infinitely far downstream) pro- 
vided that the Mach number considered is the component, 
of the Mach number normal to the generators of the cylinder. 

These arguments are for steady-flight speeds. Large 
accelerations through sonic flight speed could conceivably 
modify the phenomenon. Thus it is difficult to judge 
whether or not the available flight-test data confirm the 
concept since nearly all such data come from missile tests 

1 It is believed that these are not actually assumptions but are capable of demonstration 
if one assumes a smooth variation of drag through Mach number 1. 
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that involved large accelerations (or decelerations) through 
sonic flight speeds. The transonic-bump tests of Weaver 
on sweptback wings (reference 1) would seem to support 
these conclusions since they show drag-coefficient maximums 
very near Mach number 1, a necessary consequence of the 
concept for finite three-dimensional bodies and finite, 
unswept, two-dimensional bodies as will now be shown. 

dCz+ -- 
dM, M,=l 

so 

--- 

where 
SLOPE OF PRESSURE- AND DRAG-COEFFICIENT CURVES AT M,=l t maximum thickness of profile 

Equation (35) enables one to calculate the slope of the (Y angle of attack of profile 
pressure- and drag-coefficient curves at Mach number 1 Similarly the drag coefficient for the rear part is 
as follows : 

(+P-P- __- 
Pm 

for isentropic flow so 

dQ, 4 2&l M,=l 

dM m hi,=1 Yfl YS1 

(36) 

.I (37) 

(38) 

using 
dM 

dM, M,a=’ 

Now for a two-dimensional body the pressure-drag coefficient 
(based on the chord) is given by the contour integral 

(3% 
where 
Q unit vector in stream direction 
fi unit vector normal to profile pointing outward 
ds element of length along profile contour 
so if the angle of attack is constant and M, is changing 

dCD 1 4 
dM =-; 

___ (40) 
m Mm=1 r+1 

But %&i ds=O for a closed contour, so 

For the front part of a profile (defined as that part ahead 
of the maximum thickness) the usual definition of a drag 
coefficient is 

CD,= -; 
J 

‘bC,i.fids (42) a 

s 

b 
where means the counterclockwise line integral from the 

point 0; maximum thickness on the upper surface to the 
point of maximum thickness on the lower surface; thus 

so 
dG, -4 t 
d&f, M_=l=Yfl c ‘OS -Y+ 1 2 cD,l~M,=l 

(43) 

(44) 

(45) 

For the tests on wedge and circular-arc sections followed 
by straight sections the concept of drag coefficient of the 
front part of the section will often be used. 

For bodies of revolution (which include spheres, cone- 
cylinders, etc.) the pressure-drag coefficient (based on maxi- 
mum cross-sectional area) at zero angle of attack is 

where 
R maximum radius of body 
I length of body 
x distance from nose along axis 
Therefore 

dCD - =D(M& 

dM, xv,=,=--- Yfl 

as before in the two-dimensional case. However, for front 
and back drag coefficients 

(47) 

so 
d&, 
dM, ~,=l =&-& cD,l~m=, (484 

and similarly 

(48b) 

and these differ from two-dimensional values obtained above 
in equations (43) and (45) by not involving the fineness 
ratio of the body (this is of course due to the different 
reference areas for drag coefficients). 

For the general finite three-dimensional body the pressure- 
drag coefficient is given by 
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(49) 

where A is some reference area of the body and S is the 
surface of the body. It follows as it did previously that 

,: . "..-- 
SLOPE OF hRAG-~OE&ICIENT CURVE AT M, =I IN TRANSONIC SIMILARITY 

PARAMETERS FOR TWO-DIMENSIONAL FLOWS 

Within the transonic approximation 

c-l=-2(~-L) 
so 

g&4(&-1) 

dM 
Now dM, Mm=1 

dt =0 implies that’ do, E,=O =O; hence 

Now 

so 

d& 
dz$, r,=o=’ 

. Similarly it is easy to show that 

d&, 
d(, E,=o=~ 

and 

d&, 
dt, E,=o= -’ 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

OTHER DATA SHOWING SLOW VARIATION OF LOCAL MACH NUMBER NEAR 
M,=l 

As mentioned previously, Maccoll in 1946 had already 
proposed the slow variation of local Mach number near 
M,=l on “bodies having distinct corners.” It appears 
that this latter restriction is not necessary. Maccoll’s pro- 
posal was based on rather slim evidence and it is believed 
that here, on the basis of the argument presented concerning 
the normal shock, the principle is explained more convinc- 
ingly. Also the experimental evidence given here and by 
Drougge (reference IS), Bleakney and Griffith (personal 
communication), Weaver (reference l), and by some NACA 
reports tends to bear out the conclusions of slow variation of 
local Mach number on bodies near M, = 1. 

This fact is sometimes slightly obscured in the NACA 
reports because pressure coeflicient was plotted instead of 
p/p,, or local Mach number. However, constant Mach 
number lines were sometimes drawn in these plots and there 
the evidence shows up strongly (see, e. g., reference 31, figs. 

. 7 to 11, pp. 36 and 37). The relative constancy of local 

Mach number distribution near M,= 1 for airfoils at an 
angle of attack is also shown clearly in figures 8, 9, and 10 
of reference 32. 

ON COMPARING THEORY AND EXPERIMENT 

In references 21 and 25 discussions were presented on the 
philosophy of comparing experiments with approximate 
theories, and these discussions will not be repeated here, 
except to mention that in some of the theoretical curves 
presented here the values have been shown with a certain 
spread which results from using a pressure coefficient equal 
to-2~or-~!y.E (the formar value is the one that 

fits into transonic similarity theory; the latter value is the 
one more commonly used in perturbation analysis). 

In connection with the idea presented in reference 25 of 
extrapolating experimental data to zero thickness in order 
to compare with results from transonic perturbation analyses, 
it is interesting to note that the characteristic Mach numbers 
mentioned in the section “Characteristic Features of Tran- 
sonic Flow past Wedge and Circular-Arc Sections” can be 
presented in powers of the thickness of the wedge (or equiv- 
alently in powers of the wedge angle), the first term of 
which gives the transonic similarity expression; two of these 
values are 

Mms2- 1 

E-s=[(y+ 1)8]2’3 

=21’3 [ 
19rf2 2 

l+T __ ( > 

l/3 

r+1 
82’3 + O( e4’3) 1 (57) 

Mp,w2-- 1 
tpn~= [(yf 1)8]2/3 

1+~[~]1’3e2’3+0(e’13)) (58) 

(See appendixes D and E.) In transonic perturbation 
theory the terms in e on the right-hand side are neglected. 
This can lead to fairly large errors for even moderately 
large values of e since the approach to 0=0 is nonlinear and 

dt mS and G.&Z 
do 

-+a ask+0 

Judging from this one might expect that quantitative 
agreement of transonic perturbation analyses with experiment 
would not be so good. However, in comparing two similar 
shapes with only slightly different thickness ratios by 
transonic similarity considerations one would expect fairly 
good agreement. 

EXPERIMENTAL RESULTS 

FLOW FIELD NEAR 10’ WEDGE 

Figure 9 shows interferograms of the flow past the 10’ 
semiangle wedge for 14 Mach numbers from 0.700 to 0.892 
and 1.207 to 1.465 (the interferograms for the 4%’ and 
7)/2” wedges were very similar and hence are not shown here). 
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(a) Mm=0.700’ .PmPa-. / -0791. (b) M, =0.794; p,/p.=O.743. 

FIGURE 9.-Interferograms of flow past IO0 semiangle wedge for various Mach numbers. 

(d) M, =0.892; p,/po=O.691. 
FIGURE 9.-Continued. 
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I II I ////A.471 

(e) (f) 
(e) M, =1.207; p,/p.=O.5%. (f) M, =X240; p,/p.=O.511. 

FIGURE Q.-Continued. 

(9) M,=1.278; p&.=0.493. 

FIGURE Q.-Continued. 

(h) 

01) M, =1.315; p,/p.=O.476. 
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P 
PO- 

(i) 
(i) M, =1.3X$ p,;p.=O,45i. 

FIGURE Q.-Continued. 

(W 
(k) M, =1.391; p,/p.=O.441. 

(j) 

(j) M, =1.375; p,/,3,=0.449. 

FIGURE Q.-Continued. 

(I) M, =1.411; p,/p.=O.432. 
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(n) M,=1.465; p,/po=O.409. 

FIGURE Q.-Concluded. 

Notice that the lines of constant density in the subsonic-flow 
interferograms are roughly elliptical in shape as predicted 
by the theory (see appendixes A and B). A supersonic 
flow region was first, detected between M,=O.700 and 0.794 
(the sonic line is shown as a dashed line in the figures) and 
a shock emanating from the corner appears in the super- 
sonic zone at M,=O.794. As the Mach number was 
increased, this zone grew larger and a shock appeared at 
the rear of it, while the shock emanating from the corner 
weakened and disappeared. This rearward shock was of 
the typical X type associated with a laminar boundary 
layer, and the interferograms clearly indicated the separation 
of the boundary layer ahead of this shock. The similarity 
between the flow field at M-=0.892 and at M,=1.207 
(figs. 9 (d) and 9 (e)) is striking; the base of the rearward 
shock has moved quite far back on the wake of the blunt 
trailing edge at M, = 1.207 but in the vicinity of and ahead 
of the sonic line the two fields are nearly identical except 
for the detached shock wave which appears about 1% chord 
lengths a.head of the wedge at M,= 1.207. As the Mach 
number was increased above 1.207, the detached shock 
moved in closer to the leading edge and finally “attached” 
at a Mach number quite close to the theoretical attachment 
Mach number of M-=1.418. Notice that the process of 
attachment is very continuous. The effect of the boundary 
layer is quite noticeable in the last few interferograms: 
This can be roughly accounted for by considering the 

boundary layer to change the shape of the body by its 
displacement thickness and then considering a nonviscous 
flow past this revised shape. On the wedge the boundary 
layer will not grow so rapidly as on a flat plate because of the 
favorable pressure gradient and, in fact, the effect of the 
strong expansion around the corner is known to cause an 
almost complete collapse of the boundary layer there. As 
the bow shock wave gets close to attachment, the velocities 
in the subsonic region behind it are getting very close to 
sonic velocity and hence the flow in this region is very 
sensitive to any slight curvature of the “revised shape” 
of the wedge. This accounts for the shift of the base of the 
sonic line forward to the leading edge as the shock ap- 
proaches attachment. The nonviscous theory would in- 
dicate that the sonic line would always begin at the corner 
and, at a Mach number just slightly above the shock- 
attachment Mach number, the whole subsonic region would 
become sonic; then, with increasing Mach number, the flow 
behind the shock would be completely supersonic. As 
observed, the boundary-layer effect is to make the wedge 
have a curved surface and the sonic line actually moves 
slowly from the corner to the nose. Even with an attached 
shock wave at M, = 1.465 the flow behind the shock is not 
quite uniform (as nonviscous theory would indicate it 
should be) because of the effective curved surface caused 
by the boundary layer. 
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LOON. MACH NUMBER DISTRIBUTIONS 0~ THREE THIN WEDGES 

Figure 10 shows the variation of local Mach number 
distribution on the surfaces of the 4jh0, 7fh”, and loo semiangle 
wedges with free-stream Mach number. This should be 
compared with figure 5 which shows the corresponding 
theoretical curves in terms of the transonic similarity param- 
eters. The general behavior of the theoretical and ex- 
perimental curves is quite definitely in good agreement. 
Particularly noteworthy is the slow variation of the local 
Mach number distribution near free-stream Mach number 1. 

PRESSURE-COEFFICIENT DISTRIBUTIONS ON THREE THIN WEDGES 

The slow variation of the Mach number distribution in 
the range near M,= 1 is obscured when the results are 
plotted in terms of pressure coefficient, since the pressure 
coefficient changes a great deal if local Mach number is con- 
stant while the free-stream Mach number changes. A better 
parameter for presenting transonic pressure distributions 
would be pJpO (p/pO’ in case of a detached shock). Typical 
C, distributions are shown in figure 11 for the 7$F’ wedge 
(the results for the loo and 4>$’ wedges were very similar 
and hence they are not presented). The points shown were 
where the fringes intersected the body in the interferograms. 
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- - Subsonic 

.b 
x/c 

(a) 10’ semiangle wedge. 

FIGURE IO.--Local Mach number against z/c for increasing free-stream Mach number. 

1.0 

.4 

~ Supersonic 
- - Subsonic 

I 

I,,, x ,/,I/ *III/IN/I//I///////////////////, 
.4 .6 .8 1.0 I.2 

x/c 
(b) 7%” semiangle wedge. 

FIGURE IO.-Continued. 

1.4 

b .2 .4 .6 .8 1.0 
X/c 

(c) 4%’ semiangle wedge. 

FIGURE IO.-Concluded. 
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- 0.860 

.767 

-c,=o 

--- Position of sonic velocity 

0 .2 .4 .6 .fJ 1.0 
x/c 

(a) Subsonic. 

FIGURE Il.-Pressure distributions [@I’ 7)b” semiangle wedge. 

Since for a wedge the drag coefficient is proportional to the 
average C,, the drag rise is evident in the subsonic distribu- 
tions as the point where C, = 0 moves rearward with increasing 
free-stream Mach number. Linearized subsonic theory 
(which predicts CD=O) locates the C,=O point at x/c=50 
percent. Figure 7 shows theoretical reduced C, distributions 
at various reduced free-stream Mach numbers. Again th& 
qualitative agreement of these curves with experiment is 
evident. 

SHOCK-DETACHMENT DISTANCE FOR THRER THIN WEDGES 

Figure 12 shows the shock-detachment distance against, 
reduced free-stream Ma,ch number for the three thin wedges 
and includes the theoretical values from reference 21. Here 
Vincenti and Wagoner’s values for 5, have been multiplied 
by ‘-&=7>? -- 

LlO=Q~ 
in order to make the transonic perturbation 

value of detachment reduced Mach number agree with the 
value from oblique-shock theory for the 7)P wedge: 6 The 
reason for this was discussed in the section “On Comparing 
Theory and Experiment,” namely, the difficulty of comparing 

1 In terms of Mach number, for the 754” wedge the shock theory predicts attachment at 
M m,=1.33 &or- -1.68), while the trensonie perturbation theory predicts Mm,=125 (Em d 
=l.lQ). 

----Position of 
sonic velocity 

for Mm= 

1.210 

1.230 

1.250 

1.270 

1.290 

I.310 

1.330 

1.350 

1.370 

1.390 

(b) Supersonic. 

FIGURE Il.-Concluded 

transonic perturbation theory quantitatively with experi- 
ment. Notice how rapidly the shock wave moves away 
from the wedge as the Mach number is decreased toward 1. 

DRAG-COEFFICIENT VARIATION WITH MACH NUMBER FOR THREE THIN 
WEDGES 

It was shown in reference 25 that the viscous effects on 
the wedge tend to compensate each other at the leading 
edge and the shoulder so that the over-all pressure drag is 
nearly the same as if the flow were inviscid. Thus it would 
be expected that the pressure-drag coefficients obtained by 
integrating the experimental pressure distributions would 
check the inviscid transonic perturbation theory. The 
reduced drag coefficient used here was 

(60) 

which is, in essence, the reduced drag coefficient of the 
upper (or lower) half wedge. This was done since the wedge 
model was regarded as the front half of a double-wedge 
profile and hence the value given here is the part of the re- 
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2.8 

2.4 

1.6 

0 IO” semiangle wedge 

o 7i0semiangle wedge 

0 A .8 2.0 2.4 
EC0 

FIGURE 12.-Shock-detachment distance against reduced Mach number for a wedge. 

duced drag coeflicient contributed by the front half of such 
an airfoil (CD, as in equation (42)), based on the chord of the 
double-wedge profile, which would be twice the chord of the 

model used here. Of course, this viewpoint’is valid only for 
supersonic free-stream Mach numbers. 

Figure 13 shows the reduced drag coefficients for the three 
thin wedges plotted against reduced Mach number. It is 

3.0 

2.5 

-%.O -1.5 -1.0 -.5 0 .5 1.0 I.5 2.0 2.5 3.0 

FIGURE 13.-Experimental reduced drag coefficient against reduced Mach number on a wedge. 

seen that the results give nearly a universal curve, which 
they should if the transonic similarity law is true, but that 
there are systematic variations with wedge angle. This is 
to be expected based on the discussion of the section “On 
Comparing Theory and Experiment.” The vertical lines 
through the experimental points indicate estimated accuracy 
of the data. This figure should be compared, with figure 8, 
the theoretical reduced-drag-coefficient variation with re- 
duced Mach number. It is obvious that the qualitative 

.I4 T T 

I00 
7g 
4 f 

Vincenti 
Cole 
Guderley 

} l- 

Theory 

I I 

Free -stream Moth number, &, 

FIGURE Il.--Drag coeflicient against Mach number for 4>f”, 7}4’, and 10’ seminngle wedges. Comparison of theory with experiment. 
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agreement of theory and experiment is good. In figure 14 
the theory and experiment are compared directly for the 
three thin wedges. Here the theoretical drag coefficients 
are shown- with a vertical spread, the upper values for 
.M, > 1 corresponding to the use of the pressure coefficient 
c =--2w--ucJ 

P a* and the lower values, to the use of the pres- 

-2(u-%4 sure co-efficient C,= U The situation is vice 

versa for M,<l. From this figure it is evident that the 
transonic perturbation theory gives a good approximation 
to experiment. 

FLOW FIELD AT M-=1.44 FOR THE X6’= WEDGE 

Figure 15 shows the experimental and theoretical constant- 
velocity lines in the subsonic region behind the detached 

‘shock wave for a 26.57“ semiangle wedge at M,= 1.44. 

FI~TJRE 15.-Constant Mach number contours for 26.V semiangle wedge at M,=1.440. 

The theoretical analysis was made from relaxation calcu- 
lations by Drebinger (reference 19) who used the flow equa- 
tions with entropy variation behind the shock taken into 
account. The experimental constant-velocity lines were 
determined from the isopycnic lines of the interferogram by 
taking into account the lateral stagnation-pressure gradient 
behind the curved shock. The isopycnic lines near this 

. . .- 

strong shock wave were probably slightly in error because of 
the “smearing out” of the pressure discontinuity across the 
shock in the side-wall boundary layers. It is seen that the 
agreement between theory and experiment on detachment 
distance and constant-velocity contours near the wedge is 
good. 

Figure 16 shows the surface pressure distribution. from 
reference 17 and the present experiments. Again it is seen 
that the agreement is good. 

.6 

Hz 
.50 .2 

F- 

.4 

- Theoretical 
(Drebinger) 

0 Experiment01 

* 
.6 

FIGURE lfi.-Pressure distribution on a 26.6O semiungle wedge at M, =1.440. 

FLOW FIELD NEAR THE &B-PERCENT CIRCULAR-ARC SECTION 

Figure 17 shows interferograms of the flow past the 
8%percent circular-arc section for 14 Mach numbers from 
0.718 to 0.936 and 1.11 to 1.500. 

Supersonic velocity first occurred at M,=O.825 (see the 
section “Crit.ical Mach number”) and in figures 17 (c) and 
17 (d) a nearly symmetric supersonic zone is shown at 
&l-=0.848. No shock waves were apparent in this zone, 
although a sensitive schlieren apparatus might have shown 
some weak shocks there. At M,=O.890 the supersonic 
zone has grown rapidly and now terminates in the X-shock 
configuration. Further increase of the Mach number to 
M-=0.935 (figs. 17 (e) and 17 (f)) shows the supersonic 
zone increasing laterally and the terminating shock moving 
rearward into the wake of the body. Figures 17 (e) and 
17 (f) also show the density distribution at M, = 1.11 (the 
detached shock wave was just out of the field of view of the 
interferometer) and it is interesting to note the similarity 
between the flow field at M,=O.935 and Mm e1.11. It 
would appear as though the shock terminating the super- 
sonic zone at M-=0.935 had moved rearward to form the 
trailing-edge shock (which is actually in the wake here 
because of the blunt trailing edge) and the supersonic zone 
had grown laterally until the sonic line joined with the 
detached shock far away from the body at M,= 1, thus 
causing an embedded subsonic zone in the supersonic flow 
with further increase in Mach number. 

- 
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(6). 

$ q 0,703-- 

I 

.728. 

(a) M, =O.i18; p,/p,=O.783. (b) M, =0.819; pJp.=O.730. 

FIGURE 17.-Interferograms of flow past B&percent cimular-arc section for various Mach numbers. 

(c) M, =0.848; p,/p.=O.715. 

(d) 

FIGURE li.-Continued. 

(d) M, =0.890; o&,=0.696. 
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(e) 34, =0.935; p,/p,=O,GG8. (I) dl,=l.ll; p,/oo=0.57i. 

FIGTRE Ii.-Continued. 

g = 0.700 ----....__ 
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(N 
(g) A&, =1.160; p,/p.=o.551. 

FIQTJRE 17.-Continued. 

(h) M,=1.200; p,/p.=o.531. 
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(i) 
(0 M, =1.250; p,/p,=o.507. 

FIGURE 17.-Continued. 

(j) M,=1.300; p,/p.=O.483. 

W 
(k) M, =1.350; pm/~o=0.460. 

FIGLYRE li.-Continued. 

(I) M,=1.400: p,/p.=o.437. 
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F~c.vn~ 17.-Concluded. 
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.4 

FIQURE la.-Local Mach number against Jc for increasing free-stream Mach number. 8.8- FIGURE 19.-Variation of reduced local Mach number distributions with reduced free-stream 
percent circular-arc section. Mach number. 8.8-percent circular-arc section. 

Wit.h further increase of Mach number above M, = 1.11, 
figures 17 (g) to 17 (n) show that the detached shock again 
approached the leading edge and the embedded subsonic 
zone decreased in size until finally the shock “attached” 
somewhere between M, = 1.400 and M, = 1.450 (the theo- 
retical value being MmA= 1.423). 

LOCAL MACH NUMBER DISTRIBUTIONS ON KS-PERCENT CIRCULAR-ARC 
SECTION 

Figure 18 shows the local Mach number distributions for 
the 8.8-percent circular-arc section as obtained from the 
experiments at various free-stream Mach numbers. Again 
it is apparent that the variation of local Mach number 
distribution near M,= 1 is very slow and, indeed, the dis- 
tribution for. M, = 1 could be interpolated from this figure 
with good accuracy. 

Figure 19 is a cross plot of the data of figure 18 except 



26 26 REPORT 1094-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS REPORT 1094-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

that here the data are given in transonic similarity param 
eters. This figure shows contours of constant reducec 
local Mach number on a plot of reduced free-stream Mac1 
number against chordwise position. The dashed lines repre 
sent subsonic local Mach numbers; the solid lines, supersonic 
local Mach numbers. Note again the slow variation o: 
local Mach number distribution with free-stream Mac1 
number near sonic velocity. 
PRESSURE-COEFFICIENT DISTRIBUTIONS ON E&PERCENT CIRCULAR-AR< 

SECTION 

Figure 20 shows the pressure-coefficient distributions or 
the 8.8-percent circtilar-arc section for various free-stream 

Mach numbers. The points shown are where the fringes 
intersected the body in the interferogram. Again the 
presentation in this manner obscures the interesting fact 
observed in figure 18. 
DRAG-COEFFICIENT VARIATION WITH MACH NUMBER FOR B&PERCENT 

CIRCULAR-ARC SECTION 

Figure 21 shows the experimental determination of the 
drag coefficient of the front part of the 8.8-percent circular- 
arc section. This again is of the nature of a fore drag coef- 
ficient and, as shown in equation (43), it should have a 

, 

\ a 
b j Sonic point 

0 
- cp=o 

r ,.. I 
0 

n\ Zero for Mm = 

D = 0.935 
- 

A-. 

- 

- 

0.935 

,890 

,848 

,819 

.?I8 

0 .2 .4 .6 .8 1.0 
X/C 

(a) Subsonic. 

FIGURE 20.-Pressure distributions on an 8.8.percent circular-arc section. 
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(b) Supersonic. 

FIGURE 20.-Concluded. 

positive slope equal to & k-?$& Co/M-=1 at M,=l; this 

is how the subsonic data have been joined with the super- 
sonic data. The vertical lines through the experimental 
points again indicate estimated accuracy of the data. For 
the case of an attached shock the pressure distribution can 
be calculated using characteristics theory and the shock 
polar; however, a close approximation is obtained by con- 
sidering the flow behind the shock wave to be Prandtl- 
Meyer flow. (This yields, approximately, parabolic-shaped 
bow and trailing-edge shock waves; see reference 33.) From 
this pressure distribution the drag was calculated and is 
shown in figure 21. Taking into account the “reflected” 
characteristics from the shock wave would give more com- 
pression and increase the drag coefficient so that it would 
agree better with the experimental values at M, = 1.450 and 
1.500 shown in figure 21. 

Note that the tests were made at low enough supersonic 
speeds to get definitely below the drag-coefficient maximum 
at M, = 1.20. 
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FIGURE 21.--Drag coefficient against Mach number for 8.8-percent circulnr-arc section. 

LOCAL MACH NUMBER DISTRIBUTIONS ON A 12-PERCENT BICONVEX 
CIRCULAR-ARC AIRFOIL 

Figure 22 shows local Mach number distributions from 
reference 8 for high-subsonic-speed flow over a 12-percent 
biconvex circular-arc airfoil (with turbulent boundary 
layer). The data for the 8.8-percent circular-arc section at 
two supersonic speeds have been scaled according to the 
transonic similarit#y laws to the 12-percent case and are 
shown for the front half of the 12-percent airfoil in figure 22. 
The back half for these two cases has been faired in using a 
Prandtl-Meyer expansion which should be approximately 
correct (a more accurate determination could have been 
made using characteristics theory and the shock polar). 
At M, = 1.58, the theory indicates that the shock is attached 
with sonic speed just behind the shock on the leading edge, 
so that the distribution can be obtained by standard methods 
mentioned above; again the Prandtl-Meyer expansion ap- 
proximation was used for the distribution at M, = 1.58 in 
figure 22. 

The behavior of the Mach number distributions is similar 
to that of the distributions shown previously, except in this 
case the movement of the shock terminating the local super- 
sonic zone is shown. Apparently little change in local Mach 
number distribution occurs between M-=0.936 and 
M-=1.29. 

DRAG-COEFFICIENT VARIATION WITH MACH NUMBER FOR A &PERCENT 
BICONVEX CIRCULAR-ARC AIRFOIL 

The data of figure 23 were converted to pressures which 
were integrated to give the pressure-drag coefficient for the 
various free-stream Mach numbers. In addition the drags 
of the front and back halves are shown separately. The 
drag-coefficient variation between M, = 0.96 and M, = 1.20 
was based on constant local Mach number distribution at 
values interpolated between the curves for M-=0.936 and 
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Fmum 22.-Local Mach number against z/c for increasing free-stream Mach number. 12 
percent biconvex circular-arc airfoil. 
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FIQUEE 23.-Drag coefficient against Mach number for l2-percent biconvex circular-arc airfoil. (From data of fig. 22 on basis of constant Mach number distribution from M, =0.96 to 1.20.) 

M, = 1.29. The data were faired into the curves for attached 
shock wave calculated on the Prandtl-Meyer expansion 
basis. It is seen that the fore drag coefiicient has a maximum 
after M, = 1 while the drag coefficient of the rear part has a 
maximum before Mm = 1. The over-all airfoil has a maxi- 
mum drag coefficient just before M,= 1 in order for the 
curve to have the slightly negative slope at Mm= 1 given 
by equation (41). 

CONCLUSIONS 

An experimental investigation of transonic flow past two- 
dimensional wedge and circular-arc sections was made using 
a Mach-Zehnder interferometer. The conclusions may be 
stated as follows: 

1. The transonic similarity theory of Von K&man and 
Guderley was checked and found to be in good agreement 
with experiment for thin wedge profiles near a free-stream 
Mach number of 1. 

2. The results of theoretical calculations, using transonic 
perturbation theory, made by Guderley and Yoshihara, 
Vincenti and Wagoner, and Cole for a wedge in transonic 
flow were checked experimentally at high-subsonic and low- 
supersonic speeds for three wedges of different angles and 
were found to be in good agreement with experiment. 

3. The flow field and the surface pressure distribution for 
a 26.6’ semiangle wedge at a free-stream Mach number of 
1.44 were obtained experimentally and were found to be in 
excellent agreement with the theoretical calculations of this 
flow made by Drebinger. 

4. The pressure distributions and drag coefficients for an 
8.8-percent circular-arc section followed by a straight section 
and for a 12-percent biconvex circular-arc airfoil were pre- 
sented completely through the transonic range. It was 
shown that some difficulty arises in comparing two-dimen- 
sional transonic perturbation theory with experiment, since 
this theory neglects thickness-ratio terms of order (t/c>213 
and higher; for even moderate thickness ratios this will 
cause noticeable deviations from more exact theory. 

5. It was shown from some physical arguments that the 
local Mach number distribution on bodies traveling through 
an infinite fluid has a stationary value at free-stream Mach 
number 1. This was verified experimentally for the case of 
two-dimensional flow. It was shown that this concept implies 
a drag-coefficient maximum just below free-stream Mach 
number 1 for all bodies in steady flight. This fact can be 
used to obtain the variation of local Mach number distribu- 
tion on bodies completely through the transonic range of 
velocities from wind-tunnel tests, provided small models 
are used so that tests can be carried well above critical Mach 
number and to low enough supersonic Mach numbers so 
that the bow shock wave is detached a chord length or so. 

CALIFORNIA INSTITUTE OF TECHNOLOGY, 
PASADENA, CALIF., June I, 1951. 
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APPENDIX A  
ASYMPTOTIC REPRESENTATION OF COLE’S SOLUTION FOR LARGE NEGATIVE VALUES OF REDUCED FREE-STREAM 

MACH NUMBER 
., 

Cole’s solution for the high-subsonic-velocity flow past a 
thin .wedge (reference. 22) is given as follows (in Cole’s 
notation) : 

= l- 2111322/32, 

s 

- cash X(V,- a) 
0 

0 sinh XV, J&z)J- ,,dh)~d~ 

(6‘4 

where the center line of the wedge is at y=O; the leading 
edge, at x=0; the shoulder, at x=1; and 

l zl=$ (1 - M_‘)3G; (63) 

, vo=(rf 110 / 
and the other notation is the same as that in the present 
paper. 

Using the standard methods of partial-fraction expansion, 
one may write 

sinh x(v,- u) A% 2 
-. 

Slnh xv, 
=l-:+22sin n?rx 

n=1 ( > v, h2v&n2s2 (64) 

Substituting these into the integrals above and making use 
of the integrals 

s 
o-&z J-&P) J-~,,@r)d~= 

i 

-cy2~-1,3(~Y)K-1/3(~P); P>r>O 
636) 

-a2Kl,3(“y)I-1,3((YP); r>P>O 

and 

S 
m  

o & J-&P) Jw(bMX= 

r 

--~~2,3(w)K-l,3(4; P>r>O 
(67) ’ 

aK2,3(~Y)I-1,3(@); r>B>O 

equations (61) and (62) can be written as 

Making use of the asymptotic formulas 
- 

K.(z)=.&e-‘+ . . . as.z+co 

(683 

(69) 7 

n$l e -‘* 
cos 9rx -eda cos n7rx = 

2 cash a-2 cos TX (73) 

one can write equations (68) and (69) for large values of z 
and z1 as 

and the simple summations 

(72) 
VO VO 

(74) 

8 Equation (67) is from reference 34; equation (66) is obtained by differentiation of equation (67) with respect to 7. 
1 Figures 5, 6, and 7 were calculated from this equation for v=O, for the cases E, SO. 
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1 (.os ?r 2_p(-q)lfl, 
VO 

-3 z, 

0 2 1’6 

cosh ~(z--l)-~os ?r z 
0; 2>21+m 

VO Vu0 

Eliminate v between equations (74) and (75) for zl>z+ ~0 

\ 
2 

\ 
(2,$ + 

2(3z1/2)‘j3 sinh [?T(z -z,)/v,] 

(76) 
and for z>zl+oo simply replace x by x-l and z--z1 by 
zl-z in eqtiation (76). Thus the lines of constant Mach 
number are ellipses with centers on y=O, with rat,io of semi- 
axes equal to 

(3~1/2)“~=& -M21rf,2 (77) 
which is precisely the solution given by the linearized 
subsonic theory (see appendix B). 

Now, in the notation of the present paper, 

and since [-- [, is small on the wedge and since 

&=-2(E-L) 
one can write 

Hence, 

so, approximately, 

&-21) 
80 

z, z,-+ m (78) 

Similarly, for large values of z and z1 it follows that 

2 
0 

116 

z, 
=l; 2, z]+m for 2 -z1 small (7% 

Substituting equations (78) and (79) into equation (16), one 
gets the exact linearized subsonic solution for constant- 
velocity lines (see appendix B). Therefore on the wedge 
(y=O), from equations (76), (78), and (79), one has approxi- 
mately for large values of z and z1 

Solving this for cVa. 

WE,=-? log, e 

or 

which is precisely the linearized subsonic solution for flow 
past a wedge (see appendix B). Thus Cole’s solution far 
away from Mm= 1 tends exactly to t,he linearized subsonic 
solution. 

APPENDIX B 
LINEARIZED SUBSONIC AND SUPERSONIC FLOW PAST WEDGE AND CIRCULAR-ARC SECTIONS 

LINEARIZED SUBSONIC FLOW PAST A WEDGE 

Let the wedge center line be on y=O, with the leading Qp =T& log, 1 =c&) (84) 
edge at x=0 and the shoulder at x=c. Then the incom- 
pressible-flow problem is to find an analytic function u--iv For the incompressible case the lines of constant pressure 
such that v=O on y=O except for O<x<c where v= U0 in the fluid will be where 
and u--iv=0 at infinity. Such a function is 

2/c -=Constant 
2/c u--iv=? log, ~ (8 1) b/c> - 1 

b/c)- 1 but t,hese are circles with centers at 

(85) 

where z=x+iy and U is the free-stream velocity. Thus on -*c, 
y=o, e e 

cpo=+=-“” log, & 
2= 

(82) 
--rC, !J=o 

T l-e e 
and radii 

Using the Prandtl-Glauert transformation, for linearized I*- G 
subsonic flow e2 e 

--*c, 

(83) 
l-e e 

In the Prandtl-Glauert transformation the u distance is 
or in transonic similarity notation 

Y  

1 stretched by the factor dw as is the pressure coef& 
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cient so the lines of constant pressure (and hence density) 
are ellipses with ratio of axes equal to dm given by 
the equation 

On the wedge (y=O, O<z<c), then 

; 2 

xfz 

pep Jl--M,r/2u 2 

sinh(‘RC;&--M,~/2e). 1 =l (86) 
1 /sinh (?r C&,4-/2 0) 

LINEARIZED SUPERSONIC FLOW PAST A WEDGE 

From the Ackeret theory the pressure coefficient in super- 
sonic flow is proportional to the slope and for the wedge 
yields simply 

cP=J$J-l (87) 

or 

G+ (88) 

LINEARIZED SUBSONIC FLOW PAST A CIRCULAR-ARC SECTION 

For the circular-arc section, the slope of the surface 
varies almost linearly with distance from the zero-slope 
point along the axis of the profile. For the section shown 
in figure 1 then, with the center line on y=O, the leading 
edge at x===O, and the zero-slope point at x=c, the incom- 
pressible-flow problem is again to find an analytic function 
u--iv such that on y=O, v=O except for O<x<c where 

, ,&y/G 1-c 
( > 

where t is the half thickness at x=c and C c 
u--iv=0 at infinity. Such a function is u-+2? t 2/c 

iT G K > ;-1 log,-- 
WC> - 1 1 

1 (89) 

so the linearized subsonic solution is 

4t --- 
G=-Jl-=;,2 K > l-5 Jog, l-2&) + 1-j (9 1) . 

The minimum C, is obtained by differentiation, and one 
finds that 

at the point where log, X/C 1 -=- and numerically the 1 -(x/c) x/c 
solution of this transcendental equation is 

x/c=O.783 
which gives 

(93) 

(94) 

LINEARIZED SUPERSONIC FLOW PAST A CIRCULAR-ARC SECTION 

The result here is again simple from the Ackeret theory: 

(95) 
or 

(96) 

APPENDIX C 
TRANSONIC SHOCK POLAR 

The equation of the shock polar in the hodograph plane is 

ii a* 
--%-- 

jy,(u-q2 a U 
a* I 2 u ii (97) 
vt-- -7rkpF 

rfl a 

where U is the velocity ahead of the shock and ?i and Z are 
velocity components behind the shock parallel and perpen- 
dicular to the direction of U, respectively. Making the 
transonic approximation in this equation, let 

ii=a*+u 
z=v 

3 
(98) 

U=a*fu, 

Substituting into equation (97), neglecting higher powers of 
the perturbation velocities, one obtains 

(99) 

Letting 

one then has 

(100) 

(101) 
The wedge angle for detachment of the shock will now 

be given by the maximum value of v’. This is easily seen 

to occur at ?I’=-$ u,’ giving v,,%’ =s 4 J3 um312. Since 

within the transonic approximation 

v’=(y+ 1>e 
on the wedge and 

U, ‘zM,~-~ (102) 
this implies that 

(Y+ l)emaz=& (M.co2- 1)3’2 (103) 

or, viewed in another light, this implies that the reduced 
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attachment Mach number is 1 this can be written 

(104) 
(105) 

and, viewed in another light, this implies that the reduced 
Similarly, the wedge angle for obtaining exactly sonic ve- Mach number for which sonic velocity is obtained behind 
locity behind the shock is given by the value of v’ where the shock on a wedge is 

u’= 0. This is v’=-$ (u,‘)~/~. Again using equation X102), Mm,---1 
t,,=L(y+ l)e12,3=21’3= 1.26 (106) 

APPENDIX D 
VARIATION OF REDUCED MACH NUMBER AT WHICH SONIC VELOCITY OCCURS BEHIND AN OBLIQUE SHOCK WITH 

FLOW-DEFLECTION ANGLE 

The oblique-shock relations can be written where 

1+Y-l 
Mz2= 

TM’ Ml2 cos2 p 
y&f: sin* fl-?Z&!L+l+~M~ sin*P (lo7) 

f(M~)=~-l+Jl+~(M,Z-l)+(~)* 

Expanding the right-hand side in powers of 2M12- 1 (assumed 

Ml2 sin2 p - 1 
small), one obtains 

tan e=2 Cot BM,2(y+~~~ Z/3+2 (108) 

where 
(r+l> tan 0=(~‘Z2;;21)“‘~[l--$!$J$ (M12-- l)+. . .] (110) 

MI lMach number ahead of shock 1 Reverting this series and letting BEtan e and M1=M,,. 
M2 Mach number behind shock 1 one finds 
B shock-wave angle 
e flow deflection angle L,= 

Mms2- 1 1+10-Y 
[h-t wY3 

,,3 e*/3 + O( 84’3) 1 (111) 
For M2=1, eliminating fl between these two equations yields 

tan ,g=f(“l) 
7M,2mj(Ml)jz (10% For r=1’4’ 

1+10-Y 
12c_1)1,z=l.176 

APPENDIX E 
VARIATION OF REDUCED MACH NUMBER BEHIND A PRANDTL-MEYER EXPANSION FROM fir= 1 THROUGH AN 

ANGLE :e, WITH 0 

The exact relation here is Reverting this series, the first few terms are 

e= 

Expanding the right-hand side in terms of m- 1, using Therefore, 
(114) 

one obtains 

(r+1)e=~(MpM2-1)3/2~(-1)‘u~(Mp~2-1)” (113) n=, 
1+2” 0 

E = Mm*- 1 
pM KY+ WI*/3 

=(g)2’3 i1+~[~~‘3e*/3+o(e4,3) 

, 

where For y= 1.4, 

+L[ 1 -(212)‘+1] & [qq3=1.097 
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